STRUCTURE OF AURICULARINE, A BIS-INDOLE ALKALOID FROM HEDYOTIS AURICULARIA

KOZHIPARAMBIL K. PURUSHOTHAMAN and AYYAPATH SARADA

Captain Srinivasa Murti Drug Research Institute for Ayurveda, Madras 600029, India

(Revised received 16 June 1980)

Key Word Index—Hedyotis auricularia; Rubiaceae; bis-indole alkaloid; auricularine.

Abstract—Auricularine, an alkaloid isolated from *Hedyotis auricularia* has been assigned structure 1 by spectroscopic methods.

The structure of a novel group of bis-indole alkaloids, borreverine [1,2] and isoborreverine have recently been established by X-ray crystallography and high resolution mass spectrometry. In the present communication we report the chemistry of yet another alkaloid, auricularine (1), belonging to the same group.

Isolation of auricularine was first reported by Ratnagiriswaran and Venkatachalam [3] who assigned it the molecular formula C₄₂H₅₅ON₅. The product we obtained by the same procedure of earlier workers was a mixture of four alkaloids from which auricularine was isolated by preparative-TLC in low yield (0.00005 %, major spot). Pure auricularine, mp 196-200 (decomp.); [α]_D 41 ± 1°, (c = 0.027, CHCl₃); $\gamma_{\text{max}}^{\text{KBr}}$ 3400 cm⁻¹, NH; $\lambda_{\text{max}}^{\text{EiOH}}$ 228 (log ε : 4.56); 251 (3.99); 285 (4.05) and 293 (4.05) nm, is assigned the correct molecular formula $C_{33}H_{42}N_4$; M⁺: 494.3413 and was found to be sensitive to reagents. From a solution of the alkaloid in 3 M HCl kept overnight recovery was only 50% of the pure alkaloid, the rest accounted for by other spots. With CDCl₃ and CHCl₃ the same phenomenon was observed and the NMR spectrum was recorded soon after preparation of the solution and the compound recovered

The functionality of auricularine was revealed by the NMR spectrum. The notable features were the presence of two C-Me groups at δ 0.32 (3H, s) and 0.92 (3H, s), a vinylic methyl at 1.72 (3H, s), a diMe amino group at 2.58 (6H, s) and a tertiary N-Me at 2.60 (3H, s). There was a broad absorption signal at 4.23 (1H) which was easily exchanged with D₂O. The presence of a single olefinic proton was observed at 5.55. From 6.2 to 7.6 there were eight aromatic protons. These spectroscopic data were strikingly similar to those reported for borreverine. Auricularine differs from borreverine in its molecular formula by CH₂ which is accounted by the presence of an extra N-diMe group in the form of a N-Me amino group. The D₂O-exchangeable proton present in borreverine at 1.42 is absent in auricularine.

Further confirmatory evidence was obtained by analysis of the high resolution mass spectrum and comparison with that of borreverine. The most important

†Analysed by D.S.50 MS data system.

fragments of auricularine are m/e 494.3413 (M⁺)†, 436.2769 ($C_{30}H_{34}N_3$), 264.1758 ($C_{19}H_{22}N$), 197.1182 ($C_{14}H_{15}N$), 172.1000 ($C_{11}H_{12}N_2$) and 58.0665 (C_3H_8N); 100%). The base peak 58.0665 (C_3H_8N) results from the loss of $CH_2=N(Me)_2$ by α -cleavage, resulting in the formation of the fragment $C_{30}H_{34}N_3$ (m/e 436) which is identical with the M-44 peak of borreverine. Thereafter the fragmentation follows the same pattern as in borreverine which is illustrated in Scheme 1.

As expected auricularine gave a positive Otto colour test and a negative Adamkiewicz reaction.

EXPERIMENTAL

All mps are uncorr. Chemical shifts are expressed in δ ppm. *Isolation of auricularine. H. auricularia* L. was collected in July and August, when in flower from the Trichur district, Kerala, India and immediately air-dried. Extraction was carried out within 1–2 weeks of collection. Storage for more than 1 month was found to reduce the alkaloidal content.

Dried and coarsely powdered plant (25 kg) was exhaustively extracted with 90% EtOH. The EtOH was removed under red. pres. and the residue (500 g) treated with C₆H₆ to remove lipids. The C₆H₆-insoluble residue was repeatedly shaken with 2% H₂SO₄ until the acid extract ceased to give an alkaloid reaction. The C₆H₆-soluble portion was treated in the same way, the acidic portions combined and then extracted with Et₂O to remove nonbasic material. The aq. acid soln was neutralised with 5% Na₂CO₃, taking care that the soln remained distinctly acid to litmus. Excess strong NH3 was then added and the soln repeatedly extracted with CHCl₃. The CHCl₃ layer was washed with H₂O and dried (Na₂SO₄). A brownish yellow residue (15 g) was obtained on removal of the CHCl3. This was dissolved in 10% aq. HOAc (100 ml) and a 50% soln of KNO₃ (10–12 ml) gradually added until the precipitation of a tarry material was complete and was set aside overnight in a refrigerator and filtered. To the filtrate, excess NH₃ was added and extracted with CHCl₃. The CHCl₃ layer was washed with H₂O and dried (Na₂SO₄). The residue obtained after removal of CHCl₃ was extracted with C₆H₆ in a Soxhlet. The C₆H₆ soln was concd and chromatographed over basic Al₂O₃ (BDH). The C₆H₆-CHCl₃ and CHCl₃ eluates upon concn gave a gummy material which was subjected to prep. TLC on Sigel using CHCl₃-MeOH (5:1) and the material obtained was

352 Short Reports

Me

(-)CH₂ =
$$\frac{1}{N}$$
 Me

(-)CH₂ = $\frac{1}{N}$ Me

(-)CH₂ Me

(-)CH₂ = $\frac{1}{N}$ Me

(-)CH₂ Me

(-)CH₂ = $\frac{1}{N}$ Me

(-)CH₂ Me

Scheme 1.

crystallized from hexane–Et₂O (12.5 mg) to yield auricularine, mp 196–200° (decomp). (Found: C, 78.63; H, 8.58; N, 11.19. C₃₃H₄₂N₄¹/2H₂O requires: C, 78.72; H, 8.55; N, 11.13 %); Found: M⁺, 494.3413, C₃₃H₄₂N₄ requires: 494.34095. The extraction was carried out 4 times to obtain 50 mg of alkaloid.

Acknowledgements---We wish to thank Dr. S. Chandrasekharan for helpful discussion and independently checking the isolation; Dr. T. R. Govindachari for high resolution mass spectral data and Dr. J. D. Connolly for the NMR spectrum.

REFERENCES

- 1. Pousset, J. L., Cave, A., Chiaroni, A. and Riche, C. R. (1977) *J. Chem. Soc. Chem. Commun.* 261.
- 2. Tillequin, F., Koch, M. and Bert, M. (1979) Lloydia 42, 92.
- Ratnagiriswaran, A. N. and Venkatachalam, K. (1942) J. Indian. Chem. Soc. 19, 389.